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Abstract— This work presents the design of a yaw controller for a small-scale helicopter. A nominal model
identification for the yaw dynamics is performed. Such model includes modeling the effects that cause the variation
of torque generated by the engine to the main rotor, which is the principal disturbance source to the yaw control.
The identified model is used in the design of two control strategies: PID and LQG. For the disturbance rejection,
integral action and a feedforward gain of the disturbance were implemented. Experimental evaluations were
conducted to verify the controllers performance under tracking reference and disturbance rejection.
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Resumo— Este trabalho trata do projeto de um controlador para o movimento de guinada de um modelo
reduzido de helicóptero. A identificação do modelo nominal utilizada para a dinâmica de guinada é apresentada,
incluindo os efeitos que causam a variação do torque gerado pelo motor, a principal fonte de pertubação para o
controle da guinada. O modelo identificado é utilizado no projeto de controladores dos tipos PID e ótimo. Para
rejeição de pertubação, uma ação integral e um ganho feedforward foram implementados. Por fim, resultados da
avaliação experimental mostram o desempenho dos controladores no acompanhamento de sinais referência e na
rejeição a perturbações.

Palavras-chave— Controle de guinada, helimodelos, identificação de sistemas, rejeição de pertubações.

1 Introduction

Among several aircrafts applied in aerial robotics
projects, the small scale helicopter models,
presents several advantages compared to air-
planes. The most notable are their (i) agility, (ii)
possibility to move with six degrees-of-freedom,
(iii) hover ability and (iv) capability of vertical
take off and landing, discarding the need of long
take-off tracks. Some of the disadvantages of heli-
copter models are the smaller time of flight auton-
omy and their inherent instability. Their mathe-
matical models also exhibit several nonlinearities
and highly coupled states.

The yaw refers to the rotational movement of
the aircraft around the Z axis of the reference co-
ordinate system at the center of gravity, as shown
in Figure 1. The yaw controllers actuate in the tail
rotor which compensates for the torque produced
by the main rotor, influencing in the aircraft sta-
bility. The scale effects provides the model heli-
copters a greater thrust/inertia relation (Gavrilets
et al., 2002; Johnson, 1980), making the yaw dy-
namics more instable. In fact, in the attitude ro-
bust control results shown in Bendotti and Morris
(1995), the yaw responses oscillate more than the
other attitude movements.

Based on the helicopter operation principles,
one approach in the design of flight control sys-
tems, which has been widely employed, is to con-
sider the system split in some subsystems and the

application of several and controllers operating
in cascade (Fujiwara et al., 2004; Puntunan and
Pamichkun, 2004). Among the advantages of this
architecture, its simple structure, low computing
load imposed on the flight control system and the
possibility to easily perform adjustments in the
controllers, not rarely while the aircraft is fly-
ing, may be highlighted. However, as the system
presents highly coupled states, undesirable para-
site responses as the helicopter moves away from
a design trim point can occur. In this context,
it is important to identify the main disturbance
sources for each subsystem of the control structure
and use controllers capable of reject these distur-
bances.

Once the main objective of the yaw controller
is to compensate the main rotor torque, the main
disturbances for the yaw are clearly the variations
on the main rotor torque. In the main rotor con-
trol, two approaches are usually considerate: the
first one considers the maintenance of the engine
throttle constant, which means a constant sup-
plied torque. In the second approach, which was
followed in this work, a regulator is designed to
keep the main rotor speed constant by varying
the throttle. In Martins et al. (2006) it is shown
that applying this methodology makes the system
more decoupled. Unfortunately, Johnson (1980)
reports that assuming the main rotor speed con-
stant, the thrust changes by the main rotor col-
lective pitch in response to vertical motion, gener-



ates disturbances to yaw due to the torque varia-
tion. Whereas, if the rotor speed is not fixed, the
thrust changes would be absorbed by a rotor speed
perturbation instead of disturbing the helicopter’s
yaw motion.

Under these circumstances, this work presents
the design of PID and LQG controllers to the
helicopter model yaw movement under presence
of collective pitch perturbation, as well as the
methodology employed and the mathematical
model identification. To improve the robustness
against disturbances, an integral action based in
state augmentation and other based in Mete and
Gündes (2004) with anti-windup action are shown.
A feedforward term of disturbance value is also
verified. A test bench is used to restrict the heli-
copter movement in the other possible degrees-of-
freedom and also to provide a safe condition for
the realization of the tests.

This paper is organized as follows: the section
2 describes the test bench, adapted to the model
helicopter Raptor 30. The identification and con-
trol algorithms are presented in the sections 3 and
4, in this order. At last, the experimental results
and conclusions are presented in sections 5 and 6.

2 The Experimental Setup

The model aircraft consists of a Raptor-30 V2
commercially available RC helicopter of 1150 mm
total length and approximately 3 kg weight. The
1245 mm main rotor is powered by a two-stroke
methanol engine of 6, 39 cm3. The helicopter it-
self is a six degrees of freedom system actuated by
five Futabar position servos. Each attitude move-
ment has its respective actuator: the longitudinal
cyclic for the pitch (θ), the lateral cyclic for the
roll (φ), and the tail rotor collective for yaw (ψ).
In addition there are two inputs controlling the
main rotor thrust: engine throttle for regulating
the rotation speed of the main rotor and main ro-
tor collective pitch. The servos are driven by 50
Hz PWM signals whose pulse width varies from 1
ms to 2 ms.

The helicopter is fitted on a three degree of
freedom joint, see Figure 1. The mechanical de-
sign of the joint allows each of the attitude an-
gles to be made immobilized individually. This
is a useful configuration that also allows attitude
control experiments with progressive complexity.
As the present work deals with the design of a
yaw controller, the both of roll and pitch joints
were held tight during identification and control,
while the yaw joint was limited for 180 degrees
of excursion. Besides, the yaw axis of helicopter,
that crosses its center of gravity, can be aligned
with the correspondent rotation axis of the joint.
This prevents a considerable change at yaw dy-
namics when the helicopter goes to fly untethered.
The attachment of the helicopter also provides a

Figure 1: The experimental platform: the heli-
copter model attached to the 3 degrees-of-freedom
base.

safe environment for performing experiments in
the laboratory, discarding the need of embedding
the full hardware on the model helicopter. The
measurements of the joint angles can also be per-
formed using cheap sensors and the control out-
puts can be computed in a PC.

As shown in the block diagram of Fig. 2, heli-
copter measurements are provided by two sensory
systems. Angular displacements in the joint are
provided by potentiometers. Rotor speed is com-
puted from readings of an optical sensor mounted
near the tail rotor. Sensor data is transmitted
through an RS-485 interface to the control soft-
ware, running in a Linux-RTAI environment on
an IBM-PC machine. The system sampling pe-
riod is 20 ms. The control software performs dig-
ital filtering on the data collected and calculates
control output. A simple low-pass filter of first or-
der is utilized for rotor speed measurements and
the attitude angles are filtered by a kalman filter
that also estimates the respective angular veloc-
ities. The output signal is sent to a microcon-
troller (µC), which is responsible for driving the
servos. The system operates in a master-slave ar-
chitecture, where the IBM-PC always performs
the role of master and the microcontrollers are
slaves. Communication between both parts ex-
hibits no deadlocks and is fault-tolerant.

3 Identification Setup

Once helicopters are inherently unstable systems,
a PID controller in cascade architecture was
tunned online to perform the identification tests.
The architecture consists of a PI controller for the
yaw velocity in the inner-loop and a PD controller
at the outer-loop for the yaw position as show the
Figure 3. The easy real time controller tuning and
the improved disturbance rejection of this struc-
ture was useful once the system performance could
be evaluated as the main rotor speed rose to its



Figure 2: Block diagram of the experimental setup.

nominal value.
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Figure 3: Cascade controller structure.

In order to design advanced controllers with
satisfactory performance, a dynamic model that
describes the yaw as a function of tail rotor col-
lective utr and collective pitch umr must be avail-
able. As the principal intent of a yaw controller is
to compensate the main rotor torque by maintain-
ing the aircraft yaw stationary, a model for angu-
lar yaw velocity ψ̇ is more representative. So, the
dynamical model in its more general form is given
by a state-space model of the form:

x(k + 1) = f (x(k), utr(k), umr(k)) ,

ψ̇(k) = h (x(k)) .

Note that at this point, the state variable x
and its dynamical equation f need to be identified.
As the general case is hard to solve, it is assumed
that the rotor operates around a nominal condi-
tion, as hovering, modeled by

ψ̇ =
¯̇
ψ + δψ̇, (1)

utr = ūtr + δutr
, umr = ūmr + δumr

,

where
¯̇
ψ, ūtr and ūmr are the nominal operating

points and δψ̇, δutr
and δumr

are the variations.
Hence, the following discrete model around nom-
inal operation point may be employed:

A(q)δψ̇(k) = Btr(q)δutr
(k)+Bmr(q)δumr

(k). (2)

An assumption made in the model described by
(2) is that servos dynamics are negligible, because
they are much faster than the helicopter dynam-
ics. If there is any low frequency influence in the
rotor speed, that effect would be modeled in the
identification procedure.

The identification experiment was performed
by varying the yaw angle references implying in
changes in the tail rotor collective actuated by
the inner loop velocity controller. As it’s de-
sired a good performance even under collective
pitch disturbances, it was excited randomly un-
der the hover zone of operation. To do that, the
model was taken into hover nominal conditions,
which, as the manufacturer recommends, main
rotor speed Ω̄ = 1510rpm and collective pitch
around 6 degrees which means ūmr = 50. Done
that, the identification procedure starts properly
making the yaw angle reference and the collec-
tive pitch vary over 160 seconds. Figure 4 (a)
shows the position references and (b) both collec-
tive pitch and tail rotor collective inputs. Among
the data collected, the values from the first 80 sec-
onds were used in the identification procedure and
the further were reserved for model validation.

The linear model was computed using the
subspace method available in MATLABr System
Identification Toolbox. The operation point val-

ues applied correspond to a
¯̇
ψ = 0 deg/s, ūmr =

50. ūtr is assumed as the mean value over the iden-
tification experiment. The Figure 4 (c) shows the
data from the identification procedure for a second
order model, which exhibited satisfactory results.
Little improvement was observed for higher order
models.

4 Control Design

Although the model identified represents the yaw
velocity dynamics, it’s desired to control the yaw
angle too. This can be done by the use of a cascade
structure like as the presented in Figure 3 or by
extending the system to obtain a model of yaw
position, which requires just one controller.

The identified system described by (2) can be
rewritten in state-space form:

x(k + 1) = Fx(k) + Gtrδutr
(k) + Gmrδumr

(k),

δψ̇(k) = Cx(k), (3)

where the vector state x refers to the linearized
model and has the same order of A(q) in (2).



Figure 4: Experimental data and identification results.

If a state for small-signal yaw position δψ is
added, the system can be described with the new
state variable z(k) = [xT (k) δψ]T :

z(k + 1) =

[
F 02×1

Ts.C 1

]

︸ ︷︷ ︸

F′

z(k) +

[
Gtr

0

]

δutr
(4)

+

[
Gmr

0

]

δumr

δψ(k) = Φz(k),

where Ts is the sample period and Φ = [02×1 1].
The controllers are designed based on this

small-signal model, which represents the yaw dy-
namics around the operating point. The con-
troller’s inputs and outputs are treated according
to (1).

4.1 Linear Quadratic Control

In the present case, given the system described by
(4), the regulator that minimizes the cost function

V (z, δutr
, k) =

∞∑

i=k

z(i)TQz(i) + δutr
(i)TRδutr

(i)

is known in the literature as steady-state linear
quadratic regulator. This regulator is obtained
by state feedback, whose gains are computed by
solving the respective algebraic Riccati equation
(Dorato et al., 1995). In the special case of this
work, z is estimated by a Kalman filter. The result
is a linear quadratic gaussian regulator (LQG).

However, the linear quadratic regulator goal
is to drive all states to zero. If there is a reference
input r(k), it can be achieved by adding a gain N̄
multiplying the reference input that drives the sys-
tem to a desired output (Figure 5). This approach
is widely employed and detailed in Franklin et al.
(1998). The control law is in the form:

u(k) = −Kx(k) + N̄r(k). (5)
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Figure 5: Block diagrams for the reference input
structure

4.2 Integral Action

Uncertainties associated with the model and the
presence of a constant disturbance δumr

make the
steady-state output error becomes not null. In
order to address this problem, an approach con-
sists in including an integral action in the optimal
controller. Usually, a standard integral-action is
designed based on augmenting the plant to include
the integrator’s states in state-feedback.

Therefore, the integral action of the error out-
put can be computed using the augmented state

v(k) =

[
z(k + 1) − z(k)

Φz(k)

]

,

which produces the following state-space model

v(k + 1) =

[
F′ 03×1

Φ 1

]

v(k) (6)

+

[
Gtr

0

]
(
δ′utr

(k + 1) − δ′utr
(k)

)

︸ ︷︷ ︸

η′
utr

(k)

+

[
Gmr

0

]

δ′umr
(k + 1) +

[
0

−1

]

r(k).

Hence, for that augmented system, the mini-
mization of V (v, ηutr

, k) is obtained by the follow-
ing control law

δutr
(k) = −K1z(k) −

K2

q − 1
(Φz(k) − r(k)), (7)

where K1, K2 compose the computed gain K[1×4]

= [K1[1×3] K2] of the augmented system.



Whereas the second term in (7) tends to drive
the system to the reference, the first term repre-
sents the regulator that drives the states to zero.
So, it is important to include the gain as in (5),
where N̄ must be now computed with K1.

Other approach evaluated to add an integral
action is based on Mete and Gündes (2004). It
consists in adding a PID to an initially designed
stabilizing controller which doesn’t have integral
action. This is useful due to it is possible to ap-
ply an anti-windup action without affecting the
closed-loop stability.

4.3 Feedforward gain of disturbance

Once the identified model also includes the collec-
tive pitch disturbance dynamics, it is reasonable
trying to compensate the effect of disturbances
in the output by computing a control action that
counteracts this effect.

In order to compensate the steady-state effect
of a constant disturbance, the necessary gain in
control input which neutralizes the steady-state
error for a given disturbance value is computed.
This gain can be achieved by ratio of the DC gains
of the transfer functions of each model input. For
the system described by (2), this gain is given by:

uff (k) = −

C(I − F)−1Gmr

C(I − F)−1Gtr

umr(k). (8)

Therefore, the complete control law is given
by:

δutr
(k) = −K1z(k) −

K2

q − 1
(Φz(k) − r(k))

+ N̄r(k) + uff (k).

5 Experimental Results

Figure 6: Comparison of the effect of the feedfor-
ward gain to disturbance rejection

Evaluation tests were carried out with four
distinct yaw controllers: one PID tunned with the
identified model, one LQG with integral action by

state augmentation, one LQG with integral ac-
tion by the two stages method, and the cascade
controller used in the identification test. The yaw
controllers were designed following the parameters
below:

• PID : Kp = 6, Ki = 1 and Kd = 2.

• LQG with integral action by state augmenta-
tion :

Q =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






, R = 50.

• LQG plus PID block : Q = 50 ·CTC, R = 1,
Kp = 10, Ki = 6 and Kd = 0.

• PI and PD in cascade:

PI: Kp = 2, Ki = 1

PD: Kp = 8, Kd = 5.5.

During experiments, the LQG rotor speed reg-
ulator was used to keep the rotor speed at 1510
rpm. This regulator is more detailed in Martins
et al. (2006). All tests were made after driving the
helicopter to its nominal operating condition, near
hovering. These tests consisted in applying a step
in reference position, and posteriorly a random
sequence of values in the collective pitch input as
disturbances. This sequence was the same for all
tests.

The evaluation of (8) gives a feedforward gain
of uff (k) = −0.1331 · umr(k). Figure 6 shows
the results for the PID controller with and with-
out feedforward gain. As the results show a good
improvement of disturbance rejection, this feed-
forward gain was used with all others yaw con-
trollers.

In Figure 7(a), the experimental results for
all yaw controllers are shown. As design require-
ments, it is desired a fast step response and small
influence from collective pitch disturbance. Fig-
ure 7(b) shows the controllers input utr and the
disturbance umr.

The results show a great performance of the
LQG with PID block, once the oscillations were
small using control input efforts much better when
compared to the ones from PID in cascade. It is
important to reduce servo damaging in long-term
operations.

6 Conclusions

This work focused on the design of a yaw con-
troller for small-scale helicopters. In this ap-
proach, a identification procedure for yaw dy-
namic model was proposed. The model compen-
sates for collective pitch variation, which may be
seen as an important disturbance, since the rotor
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Figure 7: The tests results. The yaw position are shown in (a): ψ (solid) and the reference (dashed). In
(b) are the servos signals: utr (solid) and umr (dashed).

speed is maintained constant. Different control
strategies were evaluated. The experimental re-
sults allowed comparison of the control strategies
in respect to step response and robustness to dis-
turbances.

This research is a part of an incremental ap-
proach for design of an aerial robot based on a
helicopter model. Current activities focus on au-
tomatic control of the helicopter attitude.

References

Bendotti, P. and Morris, J. C. (1995). Robust
hover control for a model helicopter, Proceed-
ings of the American Control Conference.

Dorato, P., Abdallah, C. and Cerone, V. (1995).
Linear Quadratic Control: An Introduction,
Prentice Hall.

Franklin, G. F., Powell, J. D. and Workman, M.
(1998). Digital Control of Dynamic Systems,
Addison Wesley.

Fujiwara, D., Shin, J., Hazawa, K. and Non-
ami, K. (2004). H∞ hovering and guid-
ance control for autonomous small-scale un-
manned helicopter, Proceedings of the 2004
IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 2463–2468.

Gavrilets, V., Mettler, B. and Feron, E. (2002).
Dynamic model for a miniature aerobatic
helicopter, Technical Report P-2543, Mas-
sahusetts Institute of Technology, Cam-
bridge, MA.

Johnson, W. (1980). Helicopter Theory, Dover.

Martins, A. S., Bo, A. P. L., Borges, G. A. and
Ishihara, J. Y. (2006). Projeto e avaliação de

reguladores da velocidade do rotor principal
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